| C18 | -0.2428 (2) | -0.0784(1) | 0.0190 (2)  | 0.0518 (4) |
|-----|-------------|------------|-------------|------------|
| C19 | -0.1489 (2) | 0.3518 (1) | 0.0759 (1)  | 0.0490 (4) |
| 020 | -0.1926 (3) | 0.3904 (1) | -0.0076 (2) | 0.1249 (9) |
| 021 | -0.0859(1)  | 0.3945 (1) | 0.1654 (1)  | 0.0526 (3) |
| C22 | -0.0802 (3) | 0.4914 (1) | 0.1615 (2)  | 0.0610 (5) |
| C23 | 0.0134 (3)  | 0.5231 (1) | 0.2643 (2)  | 0.0641 (5) |
|     |             |            |             |            |

#### Table 2. Selected geometric parameters (Å, °)

| O1—C9           | 1.376 (2) | C8—C9           | 1.378 (2) |
|-----------------|-----------|-----------------|-----------|
| 01—C2           | 1.394 (2) | C8-C18          | 1.509 (2) |
| C2-011          | 1.202 (2) | C9-C10          | 1.408 (2) |
| C2—C3           | 1.451 (2) | C12—C13         | 1.519 (3) |
| C3-C4           | 1.369 (2) | C13-C14         | 1.503 (3) |
| C3-C19          | 1.472 (2) | C14—N15         | 1.459 (2) |
| C4-C10          | 1.408 (2) | N15—C16         | 1.463 (2) |
| C5—C6           | 1.366 (2) | C16—C17         | 1.500 (3) |
| C5-C10          | 1.411 (2) | C17—C18         | 1.522 (3) |
| C6—C7           | 1.436 (2) | C19—O20         | 1.188 (2) |
| C6-C12          | 1.505 (2) | C19—O21         | 1.322 (2) |
| C7—N15          | 1.365 (2) | O21—C22         | 1.450 (2) |
| C7—C8           | 1.410 (2) | C22—C23         | 1.487 (3) |
| C9-01-C2        | 123.6 (1) | C14-N15-C16     | 114.5 (1) |
| 011—C2—O1       | 115.1 (1) | N15-C16-C17     | 112.1 (2) |
| O11—C2—C3       | 128.6 (2) | C16-C17-C18     | 110.2 (2) |
| 01—C2—C3        | 116.3 (1) | C8-C18-C17      | 109.3 (1) |
| C6-C12-C13      | 109.2 (2) | O20-C19-O21     | 121.7 (2) |
| C14-C13-C12     | 109.4 (2) | O20-C19-C3      | 125.1 (2) |
| N15-C14-C13     | 112.4 (1) | O21—C19—C3      | 113.0 (1) |
| C7—N15—C14      | 123.4 (1) | C19-021-C22     | 117.9 (1) |
| C7N15-C16       | 122.0 (1) | O21—C22—C23     | 108.0 (2) |
| C12—C6—C7—N15   | -0.8 (2)  | C8-C7-N15-C16   | -6.8 (2)  |
| N15-C7-C8-C18   | 3.2 (2)   | C13-C14-N15-C7  | -13.7 (3) |
| C7-C6-C12-C13   | 36.3 (2)  | C7-N15-C16-C17  | -22.2 (2) |
| C6-C12-C13-C14  | -59.9 (2) | N15-C16-C17-C18 | 53.1 (2)  |
| C12-C13-C14-N15 | 49.3 (2)  | C7-C8-C18-C17   | 28.0 (2)  |
| C6-C7-N15-C14   | -11.7 (3) | C16-C17-C18-C8  | -55.0 (2) |
|                 | • •       |                 | ·• (-)    |

The structure was solved in the space group  $P2_1$  and refined in  $P2_1/n$ . All the H atoms were located from difference Fourier maps and refined isotropically. *PARST* (Nardelli, 1983*b*) was used for geometrical calculations and *SHELXTL/PC* (Sheldrick, 1990) for molecular graphics.

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: KH1015). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Chinnakali, K., Selladurai, S., Sivakumar, K., Subramanian, K. & Natarajan, S. (1990). Acta Cryst. C46, 837–839.
- Chinnakali, K., Sivakumar, K. & Natarajan, S. (1990). Acta Cryst. C46, 669-671.
- Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Low, J. N. & Wilson, C. C. (1984). Acta Cryst. C40, 1030-1032.

- Nardelli, M. (1983a). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1983b). Comput. Chem. 7, 95-98.
- Ravikumar, K., Rajan, S. S., Sivakumar, K. & Natarajan, S. (1989). Acta Cryst. C44, 1996–1999.
- Reynolds, G. A. & Drexhage, K. H. (1975). Opt. Commun. 13, 222-225.

©1995 International Union of Crystallography

Printed in Great Britain - all rights reserved

- Sahyun, M. R. V. & Sharma, D. K. (1992). Chem. Phys. Lett. 189, 571-576.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Skrzat, Z. & Roszak, A. (1986). Acta Cryst. C42, 1194-1196.

Acta Cryst. (1995). C51, 958-960

# 3-Hydroxyimino- $5\alpha$ , $13\alpha$ , $14\beta$ , $17\alpha$ -lanosta-8, 24-dien-20-oic Acid

GYULA ARGAY AND ALAJOS KÁLMÁN

Central Research Institute for Chemistry, Hungarian Academy of Sciences, POB 17, Budapest, H-1525 Hungary

SOTE VLADIMIROV AND DOBRILA ŽIVANOV-STAKIĆ

Department of Pharmaceutical Chemistry, Pharmaceutical Faculty, Vojvode Stepe 450, 11000 Belgrade, Serbia

Béla Ribár

Serbian Academy of Sciences and Arts-Branch in Novi Sad, Ul. S. Markovića 6, 21000 Novi Sad, Serbia

(Received 19 July 1994; accepted 28 October 1994)

### Abstract

Rings *B* and *C* in the title compound,  $C_{30}H_{47}NO_3$ , have a common double bond and adopt an envelope shape, whereas ring *D* assumes a half-chair conformation. Crystal packing is established by intermolecular hydrogen bonds forming infinite helices of the molecules.

### Comment

'Elemi' acids isolated from *Manila elemi* resins may exist in either 3-hydroxy or 3-oxo forms. Ruzicka and co-workers (Ruzicka & Häusermann, 1942; Ruzicka, Rey & Spillmann, 1942; Ruzicka, Rey, Spillmann & Baumgartner, 1943) systematically elucidated the relationships between the tetracyclic triterpenes (*e.g.* squalene, lanosterol) and, among others, derived the chemical structures of  $\alpha$ -elemolic and  $\beta$ -elemonic acids. These natural products may be used as raw materials for the semisynthesis of some biologically active steroids. The crystal structure of the title compound, (I), *i.e.* the oxime of  $\beta$ -elemonic acid, is reported in this paper.



Ring A with the oxime group at C3 assumes a chair conformation, whereas ring B, which shares a double bond with ring C, assumes an envelope shape with C5 on the flap [puckering parameters (Cremer & Pople, 1975): [Q = 0.521(1) Å,  $\varphi = 5.8(3)^\circ$ ,  $\theta = 46.0(2)^\circ$ , with a lowest asymmetry factor (Kálmán, Czugler & Simon, 1982) of  $fC_s(C5) = 0.03(6)$  Å]. Similarly ring C exhibits an envelope form with C13 on the flap [Q =0.524(2) Å,  $\varphi = 108.2(3)^\circ$ ,  $\theta = 53.6(2)^\circ$ ,  $fC_s(C13) =$ 0.09(16) Å]. The five-membered ring D, which is *trans*fused to ring C, adopts a half-chair form with a pseudotwofold symmetry axis running through C16 and the midpoint of the C13—C14 bond [Q = 0.475(2) Å,  $\varphi =$  $17.7(3)^\circ$ ,  $fC_2(C16) = 0.00(1)$  Å].

The C17 side chain may be partitioned into three planar groups, each formed by four non-H atoms, C17— C20—C21—C22, C22—C23—C24—C25 and C22— C23—C24—C26. The planar carboxyl group [maximum deviation 0.005(1)Å] is perpendicular [88.9(1)°] to the C17—C20—C21—C22 group, while the best plane of the terminal isoprenyl moiety [maximum deviation 0.040(1)Å] makes an angle of 73.8(1)° with the plane of C17—C20—C21—C22 [torsion angle: 173.4(3)°].

The helical array of the half-moon-shaped molecules is maintained by intermolecular hydrogen-bond pairs at both ends of the molecules (Table 3). Each oxime group forms two hydrogen bonds with the carboxyl



Fig. 1. A perspective view of the molecule with atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.

molecule translated by y = 0.5 along the screw axis. In these hydrogen-bond pairs both ==N-OH and --COOH groups act simultaneously as donor and acceptor.



Fig. 2. Close packing showing hydrogen-bond pairs at both ends of the molecules.

#### Experimental

The title compound was prepared by the method of Clarke (1975) and crystallized from a mixture of solvents EtOH-BuAc (1:1  $\nu/\nu$ ). M.p. 491-492 K.

Crystal data

| $C_{30}H_{47}NO_3$                  | Cu $K\alpha$ radiation            |
|-------------------------------------|-----------------------------------|
| $M_r = 469.69$                      | $\lambda = 1.5418 \text{ Å}$      |
| Monoclinic                          | Cell parameters from 25           |
| P2 <sub>1</sub>                     | reflections                       |
| a = 12.995 (1) Å                    | $\theta = 43.96 - 46.16^{\circ}$  |
| <i>b</i> = 7.161 (1) Å              | $\mu = 0.547 \text{ mm}^{-1}$     |
| c = 16.187(1) Å                     | T = 293 (2)  K                    |
| $\beta = 112.37 (1)^{\circ}$        | Transparent block                 |
| $V = 1393.0(2) \text{ Å}^3$         | $0.70 \times 0.55 \times 0.40$ mm |
| Z = 2                               | Colourless                        |
| $D_{\rm x} = 1.120 {\rm Mg m}^{-3}$ |                                   |

Data collection

Enraf-Nonius CAD-4 $R_{int} =$ diffractometer $\theta_{max} =$  $\omega/2\theta$  scansh = -Absorption correction:k = -not appliedl = -26630 measured reflections3 stan5757 independent reflectionsfree5684 observed reflectionsinte $[I > 2\sigma(I)]$  $[I > 2\sigma(I)]$ 

# Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.0337$  $wR(F^2) = 0.0968$   $R_{int} = 0.0081$   $\theta_{max} = 75.57^{\circ}$   $h = -16 \rightarrow 16$   $k = -8 \rightarrow 8$   $l = -20 \rightarrow 20$ 3 standard reflections frequency: 60 min intensity decay: none

Extinction correction: SHELXL93 (Sheldrick, 1994)

| S = 1.064                                                   | Extinction coefficient:    | С2—С  |
|-------------------------------------------------------------|----------------------------|-------|
| 5757 reflections                                            | 0.0048 (5)                 | C3—C  |
| 316 parameters                                              | Atomic scattering factors  | N3-C  |
| H-atom parameters refined                                   | from International Tables  | C2C   |
| using a riding model                                        | for Crystallography (1992, | C3—N  |
| $w = 1/[\sigma^2(F_o^2) + (0.0616P)^2]$                     | Vol. C, Tables 4.2.6.8 and | C3—C4 |
| + 0.1052P]                                                  | 6.1.1.4)                   |       |
| where $P = (F_0^2 + 2F_c^2)/3$                              | Absolute configuration:    | C3-C4 |
| $(\Delta/\sigma)_{\rm max} = 0.012$                         | Flack (1983), $h =$        | C410  |
| $\Delta \rho_{\rm max} = 0.204 \ {\rm e} \ {\rm \AA}^{-3}$  | 0.02 (16)                  | C42(  |
| $\Delta \rho_{\rm min} = -0.147 \ {\rm e} \ {\rm \AA}^{-3}$ | • ·                        | C6-C  |
|                                                             |                            | ~~~~  |

# Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å<sup>2</sup>)

# $U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

|      | x             | у          | Ζ             | $U_{eq}$   |
|------|---------------|------------|---------------|------------|
| Cl   | 0.22063 (11)  | 1.0000     | 0.60864 (9)   | 0.0451 (3) |
| C2   | 0.27744 (13)  | 1.0112 (3) | 0.71077 (9)   | 0.0496 (3) |
| C3   | 0.30450(11)   | 0.8164 (3) | 0.74582 (8)   | 0.0426 (3) |
| N3   | 0.25738 (10)  | 0.7344 (3) | 0.79196 (7)   | 0.0453 (2) |
| 03   | 0.18243 (11)  | 0.8491 (2) | 0.81233 (8)   | 0.0594 (3) |
| C4   | 0.38394 (11)  | 0.7060(3)  | 0.71550 (9)   | 0.0444 (3) |
| C41  | 0.38977 (14)  | 0.5009 (3) | 0.74442 (10)  | 0.0563 (3) |
| C42  | 0.50272 (12)  | 0.7877 (4) | 0.76061 (11)  | 0.0637 (4) |
| C5   | 0.33519 (10)  | 0.7151 (3) | 0.61076 (8)   | 0.0405 (2) |
| C6   | 0.40827 (12)  | 0.6202 (3) | 0.56869 (10)  | 0.0564 (4) |
| C7   | 0.34091 (13)  | 0.5824 (3) | 0.47061 (10)  | 0.0601 (4) |
| C8   | 0.26028 (10)  | 0.7305 (3) | 0.42310 (8)   | 0.0445 (3) |
| C9   | 0.23237 (11)  | 0.8747 (3) | 0.46507 (9)   | 0.0452 (3) |
| C10  | 0.29527 (10)  | 0.9090 (3) | 0.56565 (8)   | 0.0406 (3) |
| C11  | 0.14680 (13)  | 1.0188 (3) | 0.41379 (9)   | 0.0536 (3) |
| C12  | 0.08790 (13)  | 0.9941 (3) | 0.31216 (9)   | 0.0523 (3) |
| C13  | 0.08971 (10)  | 0.7903 (3) | 0.28431 (8)   | 0.0393 (3) |
| C14  | 0.21247 (10)  | 0.7217 (3) | 0.32213 (9)   | 0.0460 (3) |
| C14A | 0.29067 (13)  | 0.8416 (4) | 0.29173 (11)  | 0.0692 (5) |
| C15  | 0.2020 (2)    | 0.5302 (3) | 0.27737 (11)  | 0.0675 (5) |
| C16  | 0.11439 (13)  | 0.5626 (3) | 0.18174 (10)  | 0.0576 (4) |
| C17  | 0.05567 (10)  | 0.7511 (3) | 0.18297 (8)   | 0.0420 (3) |
| C18  | 0.01816 (12)  | 0.6722 (3) | 0.32160 (9)   | 0.0526 (3) |
| C19  | 0.38958 (13)  | 1.0466 (3) | 0.57331 (11)  | 0.0609 (4) |
| C20  | -0.06877 (10) | 0.7441 (3) | 0.12138 (8)   | 0.0418 (3) |
| C21  | -0.08122 (12) | 0.7299 (3) | 0.02281 (8)   | 0.0499 (3) |
| C22  | -0.20097 (14) | 0.6998 (3) | -0.04353 (9)  | 0.0565 (4) |
| C23  | -0.24002(12)  | 0.5037 (3) | -0.04643 (9)  | 0.0500 (3) |
| C24  | -0.32470 (12) | 0.4382(3)  | -0.02876 (9)  | 0.0543 (3) |
| C25  | -0.3542 (2)   | 0.2333 (4) | -0.04188 (14) | 0.0766 (5) |
| C26  | -0.3960 (2)   | 0.5518 (4) | 0.00540 (13)  | 0.0788 (6) |
| C30  | -0.12621 (10) | 0.9203 (3) | 0.13182 (8)   | 0.0424 (3) |
| 031  | -0.10347 (9)  | 1.0745 (2) | 0.11244 (7)   | 0.0544 (2) |
| O32  | -0.20319 (9)  | 0.8921 (2) | 0.16563 (7)   | 0.0530 (2) |
|      |               |            |               |            |

#### Table 2. Selected geometric parameters (Å, °)

| C1—C2   | 1.535 (2) | C12-C13  | 1.530 (2) |
|---------|-----------|----------|-----------|
| C1-C10  | 1.537 (2) | C13-C18  | 1.540 (2) |
| C2—C3   | 1.497 (2) | C13-C17  | 1.553 (2) |
| C3—N3   | 1.275 (2) | C13-C14  | 1.555 (2) |
| C3C4    | 1.522 (2) | C14C15   | 1.532 (2) |
| N3O3    | 1.406 (2) | C14-C14A | 1.547 (2) |
| C4C41   | 1.535 (2) | C15-C16  | 1.551 (2) |
| C4C42   | 1.549 (2) | C16C17   | 1.554 (2) |
| C4C5    | 1.569 (2) | C17-C20  | 1.544 (2) |
| C5-C6   | 1.523 (2) | C20—C30  | 1.508 (2) |
| C5-C10  | 1.563 (2) | C20-C21  | 1.545 (2) |
| C6C7    | 1.517 (2) | C21-C22  | 1.533 (2) |
| C7—C8   | 1.484 (2) | C22—C23  | 1.488 (2) |
| C8C9    | 1.359 (2) | C23—C24  | 1.324 (2) |
| C8-C14  | 1.513 (2) | C24C26   | 1.488 (2) |
| C9-C11  | 1.512 (2) | C24C25   | 1.512 (3) |
| C9-C10  | 1.538 (2) | C30-O31  | 1.215 (2) |
| C10C19  | 1.540 (2) | C30O32   | 1.326 (2) |
| C11-C12 | 1.538 (2) |          |           |

| C2-C1-C10  | 112.5 (1) | C13-C12-C11  | 111.6(1)  |
|------------|-----------|--------------|-----------|
| C3-C2-C1   | 107.9(1)  | C12-C13-C18  | 109.2(1)  |
| N3-C3-C2   | 123.7 (1) | C12C13C17    | 117.0(1)  |
| N3-C3-C4   | 119.1 (1) | C18-C13-C17  | 110.0(1)  |
| C2-C3-C4   | 116.9 (1) | C12-C13-C14  | 108.3 (1) |
| C3-N3-03   | 113.5 (1) | C18C13C14    | 110.7 (1) |
| C3-C4-C41  | 111.1 (1) | C17-C13-C14  | 101.3(1)  |
| C3-C4-C42  | 109.2(1)  | C8-C14-C15   | 118.3 (1) |
| C41-C4-C42 | 107.0(1)  | C8-C14-C14A  | 105.7(1)  |
| C3C5       | 106.4 (1) | C15-C14-C14A | 107.3(1)  |
| C41-C4-C5  | 108.8 (1) | C8-C14-C13   | 110.5 (1) |
| C42C4C5    | 114.5 (1) | C15-C14-C13  | 101.7 (1) |
| C6-C5-C10  | 109.9 (1) | C14A-C14-C13 | 113.5(1)  |
| C6C5C4     | 113.6(1)  | C14C15C16    | 103.8 (1) |
| C10C5C4    | 117.9 (1) | C15-C16-C17  | 107.1 (1) |
| C7-C6-C5   | 109.8 (1) | C20-C17-C13  | 119.7(1)  |
| C8C7C6     | 115.3 (1) | C20C17C16    | 111.2 (1) |
| C9-C8-C7   | 123.7(1)  | C13-C17-C16  | 103.1(1)  |
| C9C8C14    | 119.6 (1) | C30C20C21    | 108.0(1)  |
| C7-C8-C14  | 116.7 (1) | C30C20C17    | 110.0(1)  |
| C8-C9-C11  | 121.6(1)  | C21-C20-C17  | 110.0(1)  |
| C8-C9-C10  | 121.0(1)  | C22-C21-C20  | 114.4 (1) |
| C11-C9-C10 | 117.1 (1) | C23—C22—C21  | 113.5 (1) |
| C9C10C1    | 112.0(1)  | C24C23C22    | 129.0 (2) |
| C9-C10-C19 | 105.9 (1) | C23—C24—C26  | 125.0 (2) |
| C1C10C19   | 108.2 (1) | C23-C24-C25  | 120.1 (2) |
| C9C10C5    | 107.5 (1) | C26-C24-C25  | 115.0 (2) |
| C1C10C5    | 108.6(1)  | O31-C30-O32  | 122.8 (1) |
| C19-C10-C5 | 114.7 (1) | O31-C30-C20  | 123.5 (1) |
| C9-C11-C12 | 118.1(1)  | O32—C30—C20  | 113.7 (1) |

# Table 3. Hydrogen-bonding geometry (Å, °)

| $D$ — $H \cdot \cdot \cdot A$ | D—H      | $\mathbf{H} \cdot \cdot \cdot \mathbf{A}$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|-------------------------------|----------|-------------------------------------------|-------------------------|-----------------------------|
| O3—H3· · ·O31 <sup>1</sup>    | 0.81 (2) | 1.93 (2)                                  | 2.712 (3)               | 161 (1)                     |
| O32—H32· · ·N3 <sup>ii</sup>  | 0.82 (2) | 1.92 (2)                                  | 2.710(3)                | 161 (1)                     |
| C                             | (1)      | 1 1                                       | 、 , .                   |                             |

Symmetry codes: (i)  $-x, y - \frac{1}{2}, 1 - z$ ; (ii)  $-x, \frac{1}{2} + y, 1 - z$ .

Data collection: Enraf-Nonius EXPRESS (Enraf-Nonius, 1992). Cell refinement: Enraf-Nonius EXPRESS. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1994).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: NA1127). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Clarke, T. H. (1975). A Handbook of Organic Analysis, edited by E. Arnold, 5th edition, p. 76. Belfast Univ. Press.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Enraf-Nonius (1992). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kálmán, A., Czugler, M. & Simon, K. (1982). Molecular Structure and Biological Activity, edited by J. F. Griffin & W. L. Duax, pp. 367-376. New York: Elsevier Biomedical.
- Ruzicka, L. & Häusermann, H. (1942). Helv. Chim. Acta, 25, 439-457.
- Ruzicka, L., Rey, E. & Spillmann, M. (1942). Helv. Chim. Acta, 25, 1375-1402.
- Ruzicka, L., Rey, E., Spillmann, M. & Baumgartner, H. (1943). Helv. Chim. Acta, 26, 1638-1658.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany